
Is IPFS Ready for Decentralized Video Streaming?
ChengHao Ryan Yang∗
Northeastern University

USA
yang.chengha@northeastern.edu

Zhengyu Wu∗
Stony Brook University

USA
zhenwu@cs.stonybrook.edu

Santiago Vargas
Stony Brook University

USA
savargas@cs.stonybrook.edu

Aruna Balasubramanian
Stony Brook University

USA
arunab@cs.stonybrook.edu

ABSTRACT
InterPlanetary File System (IPFS) is a peer-to-peer protocol for
decentralized content storage and retrieval. The IPFS platform has
the potential to help users evade censorship and avoid a central
point of failure. IPFS is seeing increasing adoption for distributing
various kinds of files, including video. However, the performance
of video streaming on IPFS has not been well-studied. We conduct
a measurement study with over 28,000 videos hosted on the IPFS
network and find that video streaming experiences high stall rates
due to relatively high Round Trip Times (RTT). Further, videos are
encoded using a single static quality, because of which streaming
cannot adapt to different network conditions.

A natural approach is to use adaptive bitrate (ABR) algorithms for
streaming, which encode videos in multiple qualities and streams
according to the throughput available. However, traditional ABR
algorithms perform poorly on IPFS because the throughput cannot
be estimated correctly. Themain problem is that video segments can
be retrieved from multiple sources, making it difficult to estimate
the throughput. To overcome this issue, we have designed Telescope,
an IPFS-aware ABR system. We conduct experiments on the IPFS
network, where IPFS video providers are geographically distributed
across the globe. Our results show that Telescope significantly
improves the Quality of Experience (QoE) of videos, for a diverse
set of network and cache conditions, compared to traditional ABR.

CCS CONCEPTS
• Networks→ Peer-to-peer networks.

KEYWORDS
IPFS, ABR, Distributed Storage System, Video Streaming
ACM Reference Format:
ChengHao Ryan Yang, Zhengyu Wu, Santiago Vargas, and Aruna Bala-
subramanian. 2023. Is IPFS Ready for Decentralized Video Streaming?. In

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583404

Proceedings of the ACM Web Conference 2023 (WWW ’23), May 1–5, 2023,
Austin, TX, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3543507.3583404

1 INTRODUCTION
InterPlanetary File System (IPFS) [12] is an emerging peer-to-peer
hypermedia protocol for storing and retrieving content. As an al-
ternative to the Hypertext Transfer Protocol (HTTP) protocol, IPFS
builds on the principles of peer-to-peer networking and content-
based addressing to create a decentralized, distributed, and trustless
data storage and delivery network.

A recent large-scale study of the IPFS network [36] shows the
significant popularity of the platform. IPFS has a presence in 152
countries and has over 3 million clients. Major web browsers, Brave
and Opera, provide native support for IPFS as an alternative to
HTTP [11, 13], and other browsers including Firefox, Chrome, and
Edge have extensions for IPFS [24]. IPFS has been used to support
decentralized Web applications, social network platforms, and con-
tent search [36]. Netflix uses IPFS in their infrastructure to transfer
docker images [17].

In effect, IPFS provides an alternative platform to make the Web
more decentralized, improve availability, and help circumvent cen-
sorship. P2P systems [10, 15, 22] have been designed with similar
objectives but these systems have seen a decline in adoption. In-
stead, platforms such as IPFS have a revised incentive model, better
integration with browsers, and an effective content discovery mech-
anism, making them a viable alternative.

Given these advantages, one natural use case for the IPFS archi-
tecture is decentralized video streaming. Video is the most popular
type of traffic on the Internet [33]. In fact, there is a video streaming
platform over IPFS called DTube [4] which sees over 2.1 million
monthly unique users [3]. However, DTube is not truly decentral-
ized. The nodes that store the videos in DTube belong to a private
cluster under DTube’s control. Our goal is to study the performance
of video streaming over IPFS when the content is truly decentral-
ized.

To this end, we conduct a measurement study of over 28,000
videos hosted in the IPFS network across the globe. We find that
almost all videos are at most 3 IPFS hops away. One IPFS hop refers
to a node contacting its closest set of peers for content; each of
these peers in-turn contacts their closest peers at each hop until the
content is retrieved. However, since IPFS nodes are overlays, the
RTT to retrieve content is relatively high, with a median of 60ms.

https://doi.org/10.1145/3543507.3583404
https://doi.org/10.1145/3543507.3583404
https://doi.org/10.1145/3543507.3583404

WWW ’23, May 1–5, 2023, Austin, TX, USA Yang and Wu, et al.

The result is that video streaming over IPFS experiences high
stall rates. When streaming video at 8 Mbps bandwidth, which is
the median bandwidth seen in the IPFS nodes in US and EU [36],
90% of the videos experience a stall. Even when experimenting with
an over-provisioned network with a bandwidth of 25 Mbps, 50%
of the videos experience stall. Part of the issue is that IPFS videos
are encoded at a single quality; the quality of the video cannot be
adapted based on the network condition.

One approach to solving the single quality problem is to use
the popular Adaptive Bitrate Streaming (ABR) algorithm [8]. ABR
encodes videos under different qualities and streams the best quality
segment depending on the estimated throughput. ABR is used by
most popular video streaming services on the Internet including
Youtube and Netflix. However, our analysis shows that traditional
ABR algorithms perform poorly in the IPFS setup. Themain problem
is that ABR cannot estimate the throughput accurately because
video segments can be fetched from multiple providers in the IPFS
network, each with a different network condition.

In this work, we present Telescope, an IPFS-aware ABR system,
to significantly improve video streaming QoE (Quality of Experi-
ence) over IPFS. Telescope works by accounting for the throughput
discrepancies at the ABR client and reverse-engineers the band-
width requirement. Traditional ABR uses a manifest file to track the
bandwidth requirement of each video segment. Telescope modifies
the bandwidth requirement such that it reflects the real bandwidth
needed to fetch the segment from IPFS, based on the location of
the provider. Telescope also takes into account how far off the
client’s estimated throughput is. This modification forces the ABR
algorithm to choose the right video quality segment despite the
incorrect throughput estimation and does not require changes to
the client ABR or the IPFS infrastructure.

We evaluate Telescope by streaming videos from geographically
distributed providers over the IPFS network. We set the client band-
width based on bandwidths seen by IPFS clients across different
global regions [36]. In all cases, Telescope outperforms traditional
ABR algorithm and vanilla IPFS streaming.

In the median bandwidth case, Telescope outperforms ABR by
123% when the cache hit is 60% and by 54% when the cache hit is
80%. These cache hit numbers are obtained from the global IPFS
cache performance [36]. Our results are consistent across different
ABR algorithms and client locations. Even in cases where there is
no cache, but cache builds up over time (what we call progressive
cache), IPFS outperforms traditional ABR by 34% in terms of QoE
and 80% in terms of stall rates.

In effect, Telescope presents a new potential for video streaming
that preserves the advantages of distributed video systems while
streaming videos with high QoE.

2 BACKGROUND AND RELATEDWORK
2.1 Background: IPFS Retrieval
A detailed overview of IPFS network and its components can be
found in Appendix A.1.1. In this section, we describe how content
is retrieved from IPFS (Figure 1). A user requests content from the
IPFS network by requesting a CID or a unique content identifier.
For ease-of-use, IPFS allows the user request to be in HTTP; in this

case, the request is sent to the IPFS gateway which converts the
HTTP request to an IPFS request.

Figure 1: An overview of how content is retrieved over IPFS
via the IPFS Gateway.

Every gateway is bootstrapped with an IPFS node, that we call
Bootstrapped IPFS node, which is part of the Global IPFS network.
Upon receiving a CID request from the gateway, the bootstrapped
IPFS node checks its local cache. If the file corresponding to the
CID is not in the cache, the gateway node first asks its connected
peers using a protocol called Bitswap. If none of the peers have
the content, the gateway node calculates the 𝑘 closest peer nodes
and requests these peers; each peer in-turn asks their 𝑘 closest
peers and so on. This procedure is repeated until the peer with the
content is found.

The peer that has the content is also called a provider. A CID/file
can be stored with multiple providers in the IPFS network. The
bitswap protocol decides which provider to fetch the content from.
If multiple providers have the content, the bitswap protocol priori-
tizes the original content provider first. The next priority is given
to the content provider that has provided content frequently in the
past.

2.2 Related Work: IPFS Video Streaming
A recent paper on IPFS [36], authored by the developers of IPFS,
describe the architecture of IPFS. The paper also discusses the
geographical distribution of IPFS nodes, IPFS bandwidths, the effect
of caching, and content retrieval performance. IPFS has also been
studied in the context of applications such as secure file sharing [23]
and social networking [38].

Our focus is to study the decentralized video streaming per-
formance over IPFS. Peer-to-peer (P2P) platforms have a similar
goal as IPFS, and there has been considerable work on P2P video
streaming [31, 37]. There are also popular commercial P2P video
streaming services such as PPLive [6] and PPStream [1]. However,
PPLive, and P2P video streaming in general, is seeing decreasing
adoption. PPStream is still popular, but the focus of the service has
shifted to centralized streaming.

In terms of video streaming over IPFS, DTube [4] is a popular
open-source video platform that is built on top of IPFS and Steem
Blockchain [21]. A study over DTube [18] shows the setup and
connection performance of DTube and compares it with the popular
video hosting site YouTube. However, in DTube, the video content
is stored and streamed from a centralized server and is not truly
decentralized.

Is IPFS Ready for Decentralized Video Streaming? WWW ’23, May 1–5, 2023, Austin, TX, USA

Figure 2: Video IPFS hops. Figure 3: Video provider RTTs. Figure 4: Videos stall rates under dif-
ferent network conditions.

3 IPFS VIDEO CHARACTERISTICS
In this section, we characterize IPFS video content and streaming
challenges.
MeasurementMethodology: Weuse IPFS-search, a search engine
designed to search IPFS content to collect video data for our study.
IPFS-search gets its data by deploying sniffers in the global IPFS
network and retrieving any new CIDs advertised/distributed in the
global network.

In this measurement, we use the API to search for all video for-
mats including mp4, avi, webm, and mpeg. The collecting machine
is located at U.S East Coast. We present the data collected from
September 1st to October 4th of 2022. We collect 39,259 unique
video CIDs from which we retrieve 28,652 videos; the remaining
videos could not be retrieved.

3.1 Characteristics of IPFS Videos
The most common video resolution is 512 x 512, accounting for
36% of the videos. We examined the content of these videos and
they are game videos such as Minecraft. IPFS is likely being used
as a storage service. Of the remaining, nearly 30% of videos use
common streaming resolutions with 1080P, 720P, and 480P being
the 3rd, 5th, and 6th most popular resolutions, respectively. The
remaining videos have non-standard resolutions. Less than 1% of
the videos have a resolution of 2K and 4K.

In terms of video duration, 90% of the videos are less than 4
minutes while 5% of the videos are longer than 20 minutes. We
further examine the duration of videos with common resolutions
(480P, 720P, 1080P). In these video formats, 72% of the videos are
less than 4 minutes and 10% are longer than 20 minutes.

3.2 IPFS Network Characteristics
Figure 2 shows that 30% of videos can be retrieved over one IPFS
hop. Almost all the videos can be retrieved within 3 IPFS hops.
However, the number of IP hops required to retrieve the videos that
have 10 or more hops are 34.7% of the videos (not shown in figure).
This is reflected in the RTTs. Figure 3 shows that the median RTT
is 60ms. For 10% of the videos, the RTTs are over 100ms. In fact,
this large RTT is the cause of video streaming problems as we see
next.

3.3 IPFS Video Performance
To study the performance of IPFS videos under different network
conditions and realistic stream settings, we randomly chose 500
videos from all 480P, 720P, 1080P videos we collected. We select
videos of different lengths according to their proportion in the total
video dataset.

We look at two bandwidths to retrieve the video: 8Mbps and
25Mbps. 8Mbps represents the median bandwidth seen by IPFS
nodes [36] in America and EU and 25 Mbps represents an over-
provisioned network. Figure 4 shows the stall rates when loading
these videos. Under 8 Mbps bandwidth conditions, 90% of the videos
are stalled and under 25 Mbps connection 50% of the videos are
stalled. For the videos that are stalled, the median stall rate for the
8 Mbps connection is as high as 10 (this means that the time to play
the video will be 9 times the original video duration). For the 25
Mbps connection, the median stall rate for videos that stall is 5.

There are two key reasons for the stalls. The first is that videos
are encoded using a single quality and video streaming cannot
adapt the quality according to the network conditions. The second
problem is that the RTTs are high, resulting in high stalls. Of course,
caching partially solves the problem with high RTTs, if the videos
are cached close to the user. However, as we show in §5, caching
does not completely eliminate poor video streaming performance.
We next describe Telescope, a system that significantly improves
video streaming over IPFS.

4 TELESCOPE DESIGN AND
IMPLEMENTATION

Adaptive Bitrate Streaming (ABR) is the most commonly used algo-
rithm for streaming videos and works by adapting the video quality
based on the network condition. ABR would solve the problem in
IPFS where all videos are streamed using a single quality irrespec-
tive of the network condition. However, because in IPFS the video
segment can be streamed from multiple locations (cached at the
gateway or fetched from different providers), vanilla ABR does not
work well, as we describe next. Instead, we develop Telescope, an
IPFS-aware ABR system. Importantly, Telescope does not require
changes to the client ABR or the IPFS infrastructure.

WWW ’23, May 1–5, 2023, Austin, TX, USA Yang and Wu, et al.

Figure 5: Trace of the estimated throughput at the ABR client
while streaming a 10-minute DASH video. The throughput es-
timation at the ABR client fluctuates depending on whether
there is a cache hit or a miss.

4.1 ABR in IPFS
ABR: Adaptive bitrate algorithms or ABR [8] (and its associated
protocol, DASH [14]) works by breaking down a video into multi-
ple short video segments. Each segment is encoded under different
qualities. ABR creates a manifest/MPD file to map the qualities
to the bandwidth required to download the segment within a cer-
tain time. Figure 6 (left side marked ‘original manifest’) shows an
example manifest file where segment N is encoded in 4 different
qualities; the higher the quality, the more bandwidth is required to
download it within the given time.

Common ABR algorithms [7, 16, 30] at their core work as follows:
the client estimates the available throughput and the algorithm
chooses the highest quality segment that can be streamed within
the given time, given the throughput.

Problems in using ABR for IPFS: In traditional ABR, the seg-
ments are downloaded from a single server. However, IPFS retrieves
videos in different ways (see Figure 1): 1) if the segment/block is
cached, it is fetched from the gateway IPFS node. 2) if not, the video
segments can be fetched from different IPFS providers.

The result is that ABR’s estimated throughput is incorrect. Figure
5 demonstrates this issue. The ABR client estimates throughput
based on the time taken to download a segment where some seg-
ments are cached while others are fetched from the IPFS provider(s).
The estimated throughput therefore hovers between the client-
gateway throughput, which is the throughput when the segment is
cached, and client-IPFS network throughput, which is the through-
put when the segment is not cached. This problem gets even more
complex when the segments are downloaded from multiple IPFS
providers.

Takeaway: The inaccurate throughput estimation at the client
ABR causes two problems: 1) When ABR overestimates the through-
put, it erroneously thinks that it can download a segment of high
quality. But if this segment is not cached, it will have to be fetched
from the provider which will take much longer than expected, re-
sulting in stalls. 2) when ABR underestimates the throughput, it
erroneously chooses to download a lower quality cached segment
even if it could have downloaded a higher quality segment. In either
case, the result is a drop in QoE.

Figure 6: Example of Telescope rewriting media manifest file.
The left shows the original manifest file. The right shows
how the manifest file is manipulated, providing a positive
adjustment to uncached segments and a negative adjustment
to the cached segments.

4.2 Telescope
Telescope works by modifying the manifest file to account for the
inaccurate throughput estimation at the client. We first describe
the two main components of Telescope and then describe the end-
to-end system. Figure 7 shows how Telescope interacts with the
IPFS infrastructure. Telescope works between the client and the
gateway or can be co-located with the gateway.

4.2.1 Modifying the manifest file. It is difficult to change how ABR
estimates client throughput since this algorithm is used universally.
Instead, Telescope works by changing the manifest file that enu-
merates the bandwidth requirement of each segment and is sent
periodically to the client.

We provide an example to show how the manifest file is modified:
Assume that as download progresses, a client’s ABR estimates the
network throughput to be 3 Mbps based on its segment download
times. However, this is an incorrect throughput estimation and,
similar to Figure 5, 3 Mbps is between the throughput of cached
segments (client-gateway) and the throughput of uncached seg-
ments (client-IPFS provider). For simplicity, assume that uncached
segments are downloaded from a single IPFS provider.

Telescope first estimates the throughput. In this example, say,
the client-gateway and client-IPFS provider throughputs are 4 Mbps
and 1 Mbps respectively. We explain how the throughput is esti-
mated next. This means, the client underestimates the throughput
for cached segments by 1 Mbps and overestimates throughput for
uncached segments by 2 Mbps. To account for this, Telescope ma-
nipulates the manifest file and reduces the bandwidth requirement
by 1 Mbps for cached segments, and increases the bandwidth re-
quirement by 2 Mbps for uncached segments. Figure 6 shows this
example. Telescope learns which segments are cached and which
are uncached using an IPFS gateway API.

In a nutshell, if the client overestimates available throughput,
Telescope increases the bandwidth requirement in the manifest file
of all uncached segments by roughly the amount of throughput
overestimation. We call this an uncached adjustment. For cached
segments, Telescope reduces the bandwidth requirement of cached
segments by roughly the underestimation amount. We call this
cached adjustment.

Is IPFS Ready for Decentralized Video Streaming? WWW ’23, May 1–5, 2023, Austin, TX, USA

Figure 7: Telescope overview

To modify the manifest file, Telescope has to (i) guess the client’s
estimated throughput and (ii) estimate the throughput for cached
and uncached segments. The most challenging part here is the
uncached segments. Recall that a segment itself is divided into
different IPFS blocks and each block can be fetched from different
providers.

4.2.2 Estimating throughput. Telescope works on the following
observation: the fraction of blocks downloaded from each provider
is roughly a constant for all segments. Figure 8 shows the frac-
tion of times videos were downloaded from a single versus mul-
tiple providers in the experiment described in §3. When multiple
providers are involved, there tends to be a single dominant provider
that contributes to a majority of the data. Further, the fraction of
providers does not change for subsequent segments. This is by
design, since the IPFS bitswap protocol favors providers that have
been historically stable.

Let P1, P2, .. be the list of past providers so far. Telescope can get
the name of the provider from each segment using an added IPFS
API. The throughput to fetch an uncached segment to the gateway
is then estimated as

𝑇𝑃1 × 𝑅𝑃1 +𝑇𝑃2 × 𝑅𝑃2 + ... +𝑇𝑃𝑛 × 𝑅𝑃𝑛 (1)

where 𝑇𝑃𝑥 is the throughput of each provider (obtained via IPFS
API), and 𝑅𝑃𝑥 is the fraction of blocks that are historically fetched
from each provider. To estimate the throughput between the client
and the IPFS network, we add the above equation to the gateway
throughput (described next).

The throughput between the gateway and the client or the gate-
way throughput is estimated based on the start and end times of the
segments downloaded from the gateway. The gateway throughput
is also the throughput of cached segments.

Now the next piece involves reverse-engineering the client’s
estimated throughput. Recall from Figure 5 that the client’s esti-
mated throughput depends on the number of cached and uncached
segments it downloads. If the client downloads mostly cached seg-
ments, then its throughput is closer to client-gateway throughput,
and if the client downloads mostly uncached segments, then the
throughput is closer to client-provider throughput. Telescope keeps
track of the number of cached and uncached segments fetched
by the client (using the IPFS native API) and estimates the client
throughput as the weighted sum of the cached and uncached seg-
ment throughputs

4.2.3 Telescope end-to-end system. At the start of the experiment,
Telescope connects the client and the gateway and retrieves videos

Figure 8: Distribution of providers when retrieving a video.
The label represents the percentage of blocks retrieved from
the dominant provider.

using traditional ABR. For uncached segments, the gateway con-
tacts the IPFS network; if the segment is cached at the bootstrapped
IPFS node, the gateway gets the cached segment directly from the
bootstrapped node.

As the download progresses, Telescope collects information
about throughputs and cached and uncached segments. At this
time, Telescope modifies the manifest file with the new bandwidth
requirements. When the manifest is set to dynamic mode, the client
periodically requests the new manifest file, and Telescope sends
this modified manifest.

Telescope adjusts the bandwidth requirement based on the client’s
estimated throughput and the adjustment based on the cache sta-
tus of the segment. Let 𝑇𝐶 , 𝑇𝐺 , and 𝑇𝑁 be the client’s estimated
throughput, client-gateway throughput, and client-IPFS network
throughput, respectively. We described the estimation of these
throughputs in the previous section. Then{

cached adjustment = 𝑇𝐶 −𝑇𝐺 if segment is cached
uncached adjustment = 𝑇𝐶 −𝑇𝑁 if segment is uncached

(2)

The cached or uncached adjustment is used to manipulate the
manifest file. For cached segments, the adjustment is negative, re-
ducing the bandwidth requirement, and for uncached segments,
the adjustment is positive increasing the bandwidth requirement.

4.3 Implementation
Telescope is implemented as a proxy between the IPFS gateway
and the client (see Figure 7). We use the Go default reverse proxy
handler [20] and the Gin Web Framework [19] to implement Tele-
scope. Telescope captures a unique client id to identify individual
video playbacks and stores throughput histories of the gateway
and the global IPFS network for each connected client. To distin-
guish between cached and uncached segments, Telescope uses the
IPFS HTTP RPC API, which is available by default [5]. To obtain
the providers’ information, we added a new API to IPFS which
returns the providers’ information for a given downloaded seg-
ment. The API uses simple filtering of the IPFS debug output. We
did not observe any impact on performance when using this new
API. The Telescope implementation is available at this GitHub link:
https://github.com/SBUNetSys/Telescope.

https://github.com/SBUNetSys/Telescope

WWW ’23, May 1–5, 2023, Austin, TX, USA Yang and Wu, et al.

5 EVALUATION
We evaluate Telescope’s streaming performance and compare it
with vanilla IPFS and traditional ABR streaming. We conduct the
experiment by deploying video files on IPFS nodes across the world
and retrieving them frommultiple clients. We need two more pieces
of information to evaluate Telescope in a real-world environment:
the typical bandwidth experienced by IPFS clients and cache hit
rates that real clients see. Recent work on IPFS [36] characterizes
both of these using data from millions of clients and thousands
of IPFS instances. We use values from this study to ground our
evaluation.

5.1 Setup
The client runs Chrome v89 with DASH.js and loads videos over
Telescope. We run an IPFS gateway instance and bootstrapped IPFS
node instance as an open-source IPFS daemon. We deploy 5 IPFS
providers (all connected to the global IPFS network) via Google
Cloud Platform (GCP) in Asia East, Europe Central, Middle East,
South America, and US West. Our default client is in Northeast US.
The RTT from the client to these vantage points are 191 ms, 102
ms, 132 ms, 125 ms, and 68 ms respectively. The client retrieves
the video from the providers over the real IPFS network. We also
experiment with clients in other locations. All experiments are
repeated 5 times and we present the average.

We experimented with other IPFS hosting services including
Pinata andWeb3Storage but did not see a difference in performance,
so we omit the results.

5.1.1 Video Player. We use the dash.js reference client v3.2.2 [16],
an open-source JavaScript DASH video player. We encoded a 10-
minute 4K video Big Buck Bunny [32] for all the experiments. The
video is encoded into 11 video quality levels or bitrate levels, 1 Mbps
to 25 Mbps (4K) in intervals of 2.5 Mbps. The encoder is FFmpeg
and uses 5-second segments. This setup is similar to previous work
and industry recommendations [14, 27].

5.1.2 Metrics. We present our performance result in terms of Qual-
ity of Experience (QoE). To calculate QoE, we measured three
common video metrics: average segment quality, stall rate, and
quality variation (or smoothness). All metrics are critical to user
experience and have been used previously to evaluate streaming
performance [9].

The average segment quality of downloaded segments ranges
from 1 to 11 (11 bitrate levels). The average segment quality for a
video is averaged over the quality of all downloaded video segments
(127 segments in the case of the reference video we employ in our
experiments). The stall rate is computed as follows:

𝑆𝑡𝑎𝑙𝑙 𝑅𝑎𝑡𝑒 =
𝑡𝑜𝑡𝑎𝑙 𝑝𝑙𝑎𝑦𝑏𝑎𝑐𝑘 𝑡𝑖𝑚𝑒 − 𝑣𝑖𝑑𝑒𝑜 𝑙𝑒𝑛𝑔𝑡ℎ

𝑣𝑖𝑑𝑒𝑜 𝑙𝑒𝑛𝑔𝑡ℎ
(3)

The quality variation represents how video quality is chang-
ing over the course of the playback and is computed similarly to
previous work [39].

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =
1
𝑁

𝑁∑︁
𝑛=1

|𝑞𝑛 − 𝑞𝑛−1 | (4)

To calculate QoE, we follow previous works [28] and take into
account average quality, stall rates, and quality variation as follows:

𝑄𝑜𝐸 =

∑𝑁
𝑛=1 𝑞𝑛

𝑁
− 𝜇 × 𝑆𝑡𝑎𝑙𝑙 𝑅𝑎𝑡𝑒 −𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (5)

for a video with 𝑁 segments. 𝑞𝑛 is the quality number and we
set 𝜇 = 6. While previous work [39] has discounted the maximum
video quality for a 1-second stall (ie. 𝜇 = 11) under 1080p video, we
show results for 𝜇 = 6 to balance between quality and stall rates.
We confirm that our QoE findings are only exacerbated with 𝜇 = 11
(omitted for brevity).

5.1.3 Baselines. We compare Telescope with the following base-
lines:

• IPFS-Vanilla: The videos are encoded only using a single
quality and this same quality is retrieved irrespective of the
network condition. We experiment with three different static
qualities: 1080P (regular), 2K (high), and 4K quality (max).

• ABR: In this case, the throughput-based ABR algorithm is
used to choose the best quality video to fetch. This alternative
is used as our default baseline.

• ABR-BOLA and ABR-DYN:We compare Telescope to two
other ABR algorithms. ABR-BOLA [35] uses the buffer oc-
cupancy to decide which quality video to send next and
ABR-DYN [2] is a dynamic ABR algorithm that switches
between both Bola and throughput modes to decide which
quality video to fetch.

5.1.4 Cache Levels. Cache plays a large part in IPFS performance
by considerably improving retrieval time. Cache hits can happen
in two places: at the IPFS gateway or at the Bootstrapped IPFS
node. Globally, it has been shown that the average gateway cache
hit ratio is 60% [36]. Gateway + Bootstrapped IPFS node cache hit
rate increases to 80% [36]. Accordingly, we consider the following
caching strategies:

• Global cache: We evaluate under the global cache hit rates
of 60% and 80%.We use two strategies for caching: 1) Random
cache where the segments to cache are chosen at random
keeping inmind the hit rate, and 2) Non-random cachewhere
we hand-select the cache to be evenly distributed across the
video segments.

• Progressive cache: Progressive cache assumes that there
is no cache in the beginning and the cache builds as videos
are fetched over and over. This experiment evaluates the
performance of a user who is fetching videos from a new
gateway whose cache has to build up.

5.1.5 Network Conditions. Our goal is to experiment with network
bandwidths experienced by IPFS clients in the real world, as re-
ported by the recent large scale study [36]. Accordingly, we choose
four bandwidths: 4 Mbps, 8 Mbps, 13 Mbps, and 25 Mbps. The me-
dian bandwidth experienced by a user in the US and Europe is 8
Mbps, so we choose this as our default. 4 and 13 Mbps bandwidths
are the lower and higher bandwidth range experienced by users
in other parts of the world (more details in §A.2). 25 Mbps is an
over-provisioned bandwidth sufficient for streaming 4K video. We
use Linux tc [26] to set the bandwidths.

Is IPFS Ready for Decentralized Video Streaming? WWW ’23, May 1–5, 2023, Austin, TX, USA

We do not vary RTT because the distributed nature of IPFS
already accounts for RTT variations.

Figure 9: Comparing QoE of Telescope with traditional ABR
and vanilla IPFS retrieval.

5.2 Telescope QoE
In this section, we evaluate Telescope under the average cache levels
of 60% and 80% seen in global IPFS networks. We first compare
Telescope with traditional ABR and vanilla IPFS retrieval for a 60%
non-random cache (Figure 9). Recall that IPFS streams videos under
static qualities, so we look at streaming at three different qualities.
For all qualities, Telescope outperforms IPFS streaming by 94% in
terms of QoE. For the rest of the evaluation, we omit results from
vanilla IPFS (with static quality) because it performs poorly under
all settings.

When compared to traditional ABR, Figure 10 shows that Tele-
scope outperforms at both cache levels and for both random and
non-random cache strategies. At 60% cache hits, Telescope outper-
forms ABR by 123%; at 80%, the difference is 54%.

QoE alone does not tell the whole story, so we next look at the
stall rates, qualities, and quality variation that are used to esti-
mate QoE (see §5.1.2). Figure 11 shows that Telescope reduces stall
rate significantly across all cache levels. Under 60% cache level,
Telescope reduces stalls by 95% compared to traditional ABR. This
is because, when traditional ABR does not estimate throughput
accurately, it may fetch high quality videos that are not cached,
resulting in higher stalls. Figure 12 shows Telescope also fetches
segments with higher average quality. Finally, Figure 13 shows
that Telescope has a more consistent experience by having lower
variation between each video segment (lower quality variation is
better).

5.3 Varying Network Conditions
Telescope performs well under the median bandwidth of 8 Mbps
as shown in the previous section. Here we present the results of
other bandwidth conditions. We use the 60% non-random cache for
these experiments. Figure 14 shows the results. Telescope’s QoE
consistently outperforms ABR throughout all WAN bandwidth
settings while maintaining a low stall rate.

Telescope works particularly well under lower bandwidth set-
tings with a QoE improvement of 287% because the penalty for
fetching an uncached segment is extremely high in these settings.
As bandwidth increases, traditional ABR performances increases be-
cause the penalty to fetch an uncached video segment is lower thus

the QoE is higher. But even under 13 Mbps bandwidth, Telescope
outperforms QoE by 62%.

Telescope has a lower stall rate across all network conditions.
Even in the over-provisioned 25 Mpbs bandwidth condition, Tele-
scope reduces stall rates by 82%. Telescope outperforms ABR for
the average quality and quality variance measures as well, but we
omit the results for brevity.

5.4 Different ABR Algorithms
Figure 15 compares Telescope with two other ABR algorithms that
make streaming decisions using different parameters: BOLA [35]
uses buffer occupancy andDynamic [34] uses both buffer occupancy
and throughput estimates. Telescope improves QoE over Dynamic
(ABR-DYN) considerably.

However, ABR-BOLA performs reasonably well, even though
Telescope improves QoE by 63% under 60% cache and 27% under
80% cache. BOLA is a buffer-based algorithm which means that the
inaccurate throughput estimation has less effect on the algorithm.

5.5 Progressive Cache
Next, we evaluate Telescope performance under the progressive
cache setting, where we continuously play the video 5 times. Recall
that with progressive cache, we assume that there is zero cache
to begin with and the cache builds progressively with each video
retrieval. Figure 16 shows that Telescope improves QoE by 34%
compared to traditional ABR. In addition, Telescope reduces stall
rates significantly by 80%. While Telescope outperforms ABR in
progressive cache, Telescope has less QoE improvement because
Telescope favors the selection of cached segments rather than un-
cached segments. Therefore, video runs with Telescope will expe-
rience low stall rates but may not select higher-quality segments
that are uncached.

5.6 Varying client location
Last, to understand how the client’s geo-location impacts Tele-
scope, we deploy the video client in Canada and Japan. As shown
in Figure 17, the QoE difference between Telescope and ABR is still
significant for geographically distributed clients.

6 CONCLUSION
InterPlanetary File System (IPFS) is a fully distributed, open, and se-
cure media storage and retrieval network that uses the concepts of
peer-to-peer networking and content-based addressing. Our work
aims to understand the performance of IPFS for distributed video
streaming. As a first step, we conduct a study with over 28,000
videos hosted across the IPFS global network. We find that videos
can experience high degrees of stalling. We explore the use of adap-
tive bitrate (ABR) algorithms to improve the performance of video
streaming over IPFS. However, traditional ABR algorithms cannot
accurately estimate available throughput because they are designed
for centralized video platforms. This inaccuracy leads to poor per-
formance when using ABR. To address this problem, we present
Telescope, an IPFS-aware ABR system that takes into account the
inaccurate throughput estimation by ABR clients. Telescope reverse
engineers video segment bandwidth requirements, forcing ABR to
pick the best quality video segments to stream even with incorrect

WWW ’23, May 1–5, 2023, Austin, TX, USA Yang and Wu, et al.

Figure 10: Average QoE
across cache settings.

Figure 11: Stall rates across
cache settings.

Figure 12: Video quality
across cache settings.

Figure 13: Quality variation
across cache settings.

Figure 14: Telescope outper-
forms ABR across different
bandwidth conditions.

Figure 15: Telescope out-
performs different ABR
algorithms.

Figure 16: Telescope performs
better than ABR in progressive
cache.

Figure 17: Telescope performs
well even with different client
locations.

throughput estimation. Importantly, Telescope does not require
any change to the ABR client or any other component in the IPFS
network, Our evaluation shows that Telescope outperforms the
baseline significantly in terms of video Quality of Experience (QoE)
under various network and cache conditions.

7 ACKNOWLEDGEMENTS
We thank all the reviewers for their constructive feedback. This
work was supported in part by NSF grant CNS-1909356.

REFERENCES
[1] 2015. http://www.ppstream.com/
[2] 2018. https://github.com/Dash-Industry-Forum/dash.js/wiki/ABR-Logic
[3] 2021. DTube coin (DTC) presentation. https://token.d.tube/
[4] 2022. DTube. https://d.tube/
[5] 2022. HTTP RPC API reference. https://docs.ipfs.io/reference/http/api/
[6] 2022. PPTV. https://pptv.com/
[7] Adobe. 2022. Adobe HTTP Dynamic Streaming. http://www.adobe.com/

products/hds-dynamic-streaming.html
[8] Saamer Akhshabi, Ali C. Begen, and Constantine Dovrolis. 2011. An Experimental

Evaluation of Rate-Adaptation Algorithms in Adaptive Streaming over HTTP. In
Proceedings of the Second Annual ACM Conference on Multimedia Systems (San
Jose, CA, USA) (MMSys ’11). Association for Computing Machinery, New York,
NY, USA, 157–168. https://doi.org/10.1145/1943552.1943574

[9] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,
Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. 2018. Oboe:
Auto-tuning Video ABR Algorithms to Network Conditions. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication.
Budapest, Hungary, 44–58.

[10] Fasiha Ashraf, Ateeqa Naseer, and Shaukat Iqbal. 2019. Comparative analysis of
unstructured P2P file sharing networks. In Proceedings of the 2019 3rd International
Conference on Information System and Data Mining. 148–153.

[11] Susie Batt. 2021. Your Files for Keeps Forever with IPFS.
https://blogs.opera.com/tips-and-tricks/2021/02/opera-crypto-files-for-keeps-
ipfs-unstoppable-domains/.

[12] Juan Benet. 2014. IPFS - Content Addressed, Versioned, P2P File System. CoRR
abs/1407.3561 (2014). arXiv:1407.3561 http://arxiv.org/abs/1407.3561

[13] Brian Bondy. 2021. IPFS Support in Brave. https://brave.com/ipfs-support/.
[14] Cloudflare. 2021. What is MPEG-DASH?

https://www.cloudflare.com/learning/video/what-is-mpeg-dash/.

[15] Bram Cohen. 2003. Incentives build robustness in BitTorrent. In Workshop on
Economics of Peer-to-Peer systems, Vol. 6. Berkeley, CA, USA, 68–72.

[16] Dash-Industry-Forum. 2021. Dash.js Github. https://github.com/Dash-Industry-
Forum/dash.js.

[17] Edgar Lee Dirk McCormick. 2020. New improvements to IPFS Bitswap for faster
container image distribution. https://blog.ipfs.io/2020-02-14-improved-bitswap-
for-container-distribution/.

[18] Trinh Viet Doan, Tat Dat Pham, Markus Oberprieler, and Vaibhav Bajpai. 2020.
Measuring Decentralized Video Streaming: A Case Study of DTube. In 2020 IFIP
Networking Conference, Networking 2020, Paris, France, June 22-26, 2020. IEEE,
118–126. https://ieeexplore.ieee.org/document/9142739

[19] Gin-Gonic. 2021. Gin Web Framework Github. https://github.com/gin-gonic/gin.
[20] golang.org. 2021. The Go Programming Language. https://golang.org/.
[21] Barbara Guidi, Andrea Michienzi, and Laura Ricci. 2020. Steem Blockchain:

Mining the Inner Structure of the Graph. IEEE Access 8 (2020), 210251–210266.
https://doi.org/10.1109/ACCESS.2020.3038550

[22] Ragib Hasan, Zahid Anwar, William Yurcik, Larry Brumbaugh, and Roy Campbell.
2005. A survey of peer-to-peer storage techniques for distributed file systems.
In International Conference on Information Technology: Coding and Computing
(ITCC’05)-Volume II, Vol. 2. IEEE, 205–213.

[23] Hsiao-Shan Huang, Tian-Sheuan Chang, and Jhih-Yi Wu. 2020. A Secure File
Sharing System Based on IPFS and Blockchain. In Proceedings of the 2020 2nd
International Electronics Communication Conference (Singapore, Singapore) (IECC
2020). Association for Computing Machinery, New York, NY, USA, 96–100. https:
//doi.org/10.1145/3409934.3409948

[24] Ipfs. 2021. IPFs/ipfs-companion: Browser extension that simplifies access to ipfs
resources on the web. https://github.com/ipfs/ipfs-companion

[25] Ipfs. 2022. InterPlanetary Name System (IPNS).
https://docs.ipfs.io/concepts/ipns/.

[26] kernel.org. 2021. tc - show / manipulate traffic control settings.
https://linux.die.net/man/8/tc.

[27] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streamingwith Pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (Los Angeles, CA, USA) (SIGCOMM ’17).
Association for Computing Machinery, New York, NY, USA, 197–210. https:
//doi.org/10.1145/3098822.3098843

[28] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streaming with Pensieve. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM 2017, Los Angeles, CA,
USA, August 21-25, 2017. ACM, 197–210. https://doi.org/10.1145/3098822.3098843

[29] Wolfgang Merkle and Frank Stephan. 1996. Trees and Learning. In Proceedings
of the Ninth Annual Conference on Computational Learning Theory, COLT 1996,
Desenzano del Garda, Italy, June 28-July 1, 1996, Avrim Blum andMichael J. Kearns
(Eds.). ACM, 270–279. https://doi.org/10.1145/238061.238118

http://www.ppstream.com/
https://github.com/Dash-Industry-Forum/dash.js/wiki/ABR-Logic
https://token.d.tube/
https://d.tube/
https://docs.ipfs.io/reference/http/api/
https://pptv.com/
http://www.adobe.com/products/hds-dynamic-streaming.html
http://www.adobe.com/products/hds-dynamic-streaming.html
https://doi.org/10.1145/1943552.1943574
https://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1407.3561
https://ieeexplore.ieee.org/document/9142739
https://doi.org/10.1109/ACCESS.2020.3038550
https://doi.org/10.1145/3409934.3409948
https://doi.org/10.1145/3409934.3409948
https://github.com/ipfs/ipfs-companion
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/238061.238118

Is IPFS Ready for Decentralized Video Streaming? WWW ’23, May 1–5, 2023, Austin, TX, USA

[30] Microsoft. 2022. Microsoft Smooth Streaming. http://www.iis.net/downloads/
microsoft/smooth-streaming

[31] Naeem Ramzan, Hyunggon Park, and Ebroul Izquierdo. 2012. Video streaming
over P2P networks: Challenges and opportunities. Signal Processing: Image
Communication 27, 5 (2012), 401–411. https://doi.org/10.1016/j.image.2012.02.004
ADVANCES IN 2D/3D VIDEO STREAMING OVER P2P NETWORKS.

[32] Ton Roosendaal. 2008. Big Buck Bunny. In ACM SIGGRAPH ASIA 2008 Computer
Animation Festival (Singapore) (SIGGRAPH Asia ’08). Association for Computing
Machinery, New York, NY, USA, 62. https://doi.org/10.1145/1504271.1504321

[33] Sandvine. 2022. Global internet phenomena. https://www.sandvine.com/
phenomena

[34] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2018. From Theory to
Practice: Improving Bitrate Adaptation in the DASH Reference Player. In Proceed-
ings of the 9th ACM Multimedia Systems Conference (Amsterdam, Netherlands)
(MMSys ’18). Association for ComputingMachinery, New York, NY, USA, 123–137.
https://doi.org/10.1145/3204949.3204953

[35] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitaraman. 2016. BOLA: Near-
optimal bitrate adaptation for online videos. In IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications. 1–9. https:
//doi.org/10.1109/INFOCOM.2016.7524428

[36] Dennis Trautwein, Aravindh Raman, Gareth Tyson, Ignacio Castro, Will Scott,
Moritz Schubotz, Bela Gipp, and Yiannis Psaras. 2022. Design and Evaluation
of IPFS: A Storage Layer for the Decentralized Web. In ACM SIGCOMM 2022
Conference (SIGCOMM ’22). ACM, Amsterdam, Netherlands. https://doi.org/10.
1145/3544216.3544232 ISBN 978-1-4503-9420-8/22/08.

[37] Long Vu, Indranil Gupta, Jin Liang, and Klara Nahrstedt. 2006. Mapping the
PPLive network: Studying the impacts of media streaming on P2P overlays.
(2006).

[38] Quanqing Xu, Zhiwen Song, Rick SiowMong Goh, and Yongjun Li. 2018. Building
an Ethereum and IPFS-Based Decentralized Social Network System. In 2018 IEEE
24th International Conference on Parallel and Distributed Systems (ICPADS). 1–6.
https://doi.org/10.1109/PADSW.2018.8645058

[39] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-
Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In
Proceedings of the 2015 ACM Conference on Special Interest Group on Data Com-
munication, SIGCOMM 2015, London, United Kingdom, August 17-21, 2015, Steve
Uhlig, Olaf Maennel, Brad Karp, and Jitendra Padhye (Eds.). ACM, 325–338.
https://doi.org/10.1145/2785956.2787486

A APPENDIX
A.1 InterPlanetary File System Background
A.1.1 IPFS Network. The global IPFS network represents a peer-
to-peer network built over IPFS nodes. Each IPFS node runs the
IPFS protocol (creating a local IPFS instance) and is connected to
each other over the WAN. At initialization, they are assigned a
cryptographic hash called Peer ID. Each IPFS node knows a subset
of all the peers in the global network and will use these peers to
search for content.

A.1.2 Storing Files Into IPFS. When the node (or the user) wants to
store a file in the IPFS network, it provides this file to its local IPFS
instance. The local IPFS instance first breaks the file into blocks
that are organized in a Merkle tree [29]. Each block is assigned a
unique content identifier (CID) which is a consistent hash value
based on its content. Each CID along with Peer ID is stored as a
record in the local Distributed Hash Table. The local IPFS instance
will distribute this record to 𝑘 closest peers; closest is defined based
on the distance between the CID hash and the peer ID. By default
IPFS nodes uses 𝑘 = 20.

A.1.3 Retrieving Files from IPFS. When a client wants to retrieve a
file from IPFS, the client must provide the CID of the content. The
CID can be obtained from a DNS-like service called the InterPlan-
etary Naming Service (IPNS) [25]. For a given CID, the local IPFS
instance uses the hash of the CID to calculate the 𝑘 closest peer
nodes. The instance then asks these peers for the CID’s provider
record. If the provider record is not located within the 𝑘 closest

Figure 18: An overview of how content is stored in IPFS.

peers, each peer in-turn contacts their 𝑘 closest peers and returns
the peer list to the local IPFS instance. The local IPFS instance then
asks these peers for the provider record. The process repeats iter-
atively until a peer with the provider record is found. Finally, the
local IPFS instance contacts the provider to retrieve the content.

A.2 Real-World IPFS Throughput
We use representative bandwidths from a recent large-scale study
on IFPS [36]. The study looked at both the lookup and download
time to fetch a 0.5MB file from IPFS across different global regions.
Based on this study, we identify 3 significant bandwidth speeds:
4 Mbps, 8 Mbps, and 13 Mbps. We compute these bandwidths by
dividing file size with total download time:

• 4 Mbps is the 25th percentile throughput for Africa, South
America, and Asia Pacific regions.

• 8 Mbps is the median throughput for the US, Europe, and
Middle East regions.

• 13 Mbps is the 90th percentile throughput for Europe and
Middle East regions.

A.3 Ethics
This work does not raise any ethical issues.

http://www.iis.net/downloads/microsoft/smooth-streaming
http://www.iis.net/downloads/microsoft/smooth-streaming
https://doi.org/10.1016/j.image.2012.02.004
https://doi.org/10.1145/1504271.1504321
https://www.sandvine.com/phenomena
https://www.sandvine.com/phenomena
https://doi.org/10.1145/3204949.3204953
https://doi.org/10.1109/INFOCOM.2016.7524428
https://doi.org/10.1109/INFOCOM.2016.7524428
https://doi.org/10.1145/3544216.3544232
https://doi.org/10.1145/3544216.3544232
https://doi.org/10.1109/PADSW.2018.8645058
https://doi.org/10.1145/2785956.2787486

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Background: IPFS Retrieval
	2.2 Related Work: IPFS Video Streaming

	3 IPFS Video Characteristics
	3.1 Characteristics of IPFS Videos
	3.2 IPFS Network Characteristics
	3.3 IPFS Video Performance

	4 Telescope Design and Implementation
	4.1 ABR in IPFS
	4.2 Telescope
	4.3 Implementation

	5 Evaluation
	5.1 Setup
	5.2 Telescope QoE
	5.3 Varying Network Conditions
	5.4 Different ABR Algorithms
	5.5 Progressive Cache
	5.6 Varying client location

	6 Conclusion
	7 Acknowledgements
	References
	A Appendix
	A.1 InterPlanetary File System Background
	A.2 Real-World IPFS Throughput
	A.3 Ethics

